If x+y=3 and xy=1 find the value of x^2+y^3+xy
Answers
Answered by
0
Answer:
Answer :
The values are :
x = 2
y= 1
Given :
The equations are :
x + y = 3
x - y = 1
To Find :
The values of x and y
Solution :
Considering the equations as :
\sf{x + y = 3 \: \: ..........(1)}x+y=3..........(1)
and
\sf{x - y = 1 \: \: ...........(2)}x−y=1...........(2)
Adding the equations (1) and (2) :
\begin{gathered} \sf{x + y + x - y = 3 + 1} \\ \\ \sf{ \implies2x = 4} \\ \\ \implies \sf x = \dfrac{4}{2} \\ \\ \bf \implies x = 2\end{gathered}
x+y+x−y=3+1
⟹2x=4
⟹x=
2
4
⟹x=2
Putting the value of x in (1) :
\begin{gathered} \sf2 + y = 3 \\ \\ \sf{ \implies y = 3 - 2} \\ \\ \implies \bf y = 1\end{gathered}
2+y=3
⟹y=3−2
⟹y=1
Thus x = 2 and y = 1
Similar questions
Math,
20 days ago
Math,
20 days ago
Biology,
1 month ago
Social Sciences,
1 month ago
Math,
8 months ago