Math, asked by anjurajput2005, 9 months ago

If x + y = 3, x^2 + y^2 = 5 then xy is

Answers

Answered by nehaa0704
3

x+y=3

x=3-y

putting the value of x

in this

x²+y²=5

(3-y) ²+y²=5

9-6y+y²+y²=5

2y²-6y+9-5=0

2y²-6y+4=0

2y²-4y-2y+4=0

2y(y-2)-2(y-2)=0

(2y-2) (y-2) =0

2y-2=0 or y-2=0

y=1 or y=2

so x=2 or 1

so x×y=2×1 or 1×2=2

I HOPE THIS WILL HELP YOU MARK ME BRAINLIEST

Answered by himanshukashyap2820
1

the given

x + y = 3 \\  {x}^{2}  +  {y}^{2}  = 5

let x+y =3. ----------- equation 1

x^2 +y^2 = 5 ------------- equation 2

taken equation 1

x + y = 3 \\ x = 3 - y

x=3-y put in equation 2

 {x}^{2}  +  {y}^{2}  = 5 \\  {(3 - y)}^{2} +  {y}^{2}  = 5 \\  {3}^{2}   +  {y}^{2}   - 2 \times 3 \times y = 5 \\ 9 +  {y}^{2}  - 6y = 5 \\  {y }^{2}  - 6y + 9 - 5 = 0 \\  {y}^{2}  - 6y + 4 = 0 \\

shri dhara chaerye method

 \frac{ - b  \frac{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \frac{ 6 \frac{ + }{ - }  \sqrt{36 - 16} }{2}  \\  \frac{6 \frac{ + }{ - } \sqrt{20}  }{2}  \\  \frac{6 \frac{ + }{ - } 2 \sqrt{5} }{2}  \\  3 \frac{ + }{ - }  \sqrt{5}  \\ y = 3 +  \sqrt{5}  \\ x = 3 -  \sqrt{5}  \\ then \\ xy = (3 +  \sqrt{5} ) \times (3 -  \sqrt{5)}  \\ xy =  {3}^{2}  -  { (\sqrt{5}) }^{2}  \\ xy = 9 - 5 \\ xy = 4 \: answer

Similar questions