Math, asked by prishakush4518, 10 months ago

If x-y=3,xy=10,find the value of x^2+y^2

Answers

Answered by amansharma264
2

Answer:

\mathfrak{\large \red{\underline{\underline{Answer}}}} \\  \large \blue{x = 5 \: and \: x =  - 2} \\ \large \blue{y = 2 \: and \: y =  - 5} \\  \large \red{ \underline{ \underline{step = 1}}} \\ \large \green{eleminate \: the \: value \: of \: x \: in \: equation \: (2)} \\ \large \red{ \underline{ \underline{step =2}}} \\  \large \green{put \: the \: value \: of \: x \: in \: equation \: (1)} \\ \large \red{ \underline{ \underline{step =3}}} \\  \large \green{we \: can \: evaluate \: the \: value \: of \: y \: in \: equation \: (1)} \\ \large \red{ \underline{ \underline{step = 4}}} \\  \large \green{put \: the \: value \: of \: y \: in \: equation \: (3)} \\ \large \red{ \underline{ \underline{step =5}}} \\  \large \green{we \: can \: find \: the \: value \: of \: x}

Step-by-step explanatio {\large \red{ \underline{ \underline{to \: find =  {x}^{2} +  {y}^{2}  }}}} \\  \large \green{x - y = 3.........(1)} \\  \large \green{xy = 10...........(2)} \\ \\   \large \green{from \: equation \: (2) \: we \: get} \\ \large \green{x =  \frac{10}{y}...........(3) } \\  \large \green{put \: the \: value \: of \: x \: in \: equation \: (1)} \\ \large \green{ \frac{10}{y} - y = 3 } \\ \large \green{10 -  {y}^{2} = 3y } \\ \large \green{ {y}^{2} + 3y - 10 = 0 } \\ \large \green{ {y}^{2} + 5y - 2y - 10 = 0 } \\ \large \green{y(y  +  5) - 2(y + 5) = 0} \\ \large \green{(y - 2)(y + 5) = 0} \\ \large \green{y = 2 \: and \: y =  - 5} \\ \large \blue{put \: y = 2 \: in \: equation \: (3)} \\ \large \pink{x =  \frac{10}{2} = 5 } \\ \large \blue{put \: y =  - 5 \: in \: equation \: (3)} \\ \large \pink{x =  \frac{10}{ - 5} =  - 2 }

Attachments:
Answered by Anonymous
0

QUESTION:

If x-y=3,xy=10,find the value of x^2+y^2

TO FIND :

value \: of \:  {x}^{2}  +  {y}^{2}

ANSWER:

Let;

x - y = 3.....(eq.1)

xy = 10.....(eq.2)

From equation 2 we get;

xy = 10 \\ x =  \frac{10}{y}

putting the value of x in equation 1;

 \frac{10}{y}  - y = 3

\red {(taking \: lcm)}

 \frac{10 -  {y}^{2} }{y}  = 3y

\red {(cross \: multiplication)}

 {y}^{2}  + 3y - 10 = 0

now it is a quadratic equation we have to factorised;

Splitting the middle term.

In such a way that it's sum equal to +3 and product equal to -10.

 {y}^{2}  + 5y - 2y - 10 = 0 \\ y(y + 5) - 2(y + 5) = 0 \\ (y - 2)(y + 5) = 0

so,

\huge\pink {(y - 2)(y + 5) = 0}

hence;

y - 2 = 0 \\ y = 2 \\  \\  \\ or \\  \\  \\ y + 5 = 0 \\ y =  - 5

\huge\blue {y = 2 \: and \:  - 5}

putting the value of y in equation 1 ;

When you = 2.

x - y = 3 \\ x - 2 = 3 \\ x = 5

\huge\green {x = 5}

when you = -5

x - y = 3 \\ x - (  - 5) = 3 \\  x + 5 = 3 \\ x =  - 2

\huge\orange {x =  - 2}

now;

When

x =5 and y = 2

then :

= x^2 + y^2

= 5^2 + 2^2

= 25 + 4

= 29

when;

x = -2 and Y = -5

then :

x^2 + y^2

= (-2)^2 + (-5)^2

= 4 + 25

= 29

Similar questions