If (x+y)/(3a-b)=(y+z)/(3b-c)=(z+x)/(3c-a) then prove that (x+y+z)/(a+b+c)=(ax+by+cz)/(a^2+b^2+c^2).
Answers
Answered by
39
Please see the attachment
Attachments:
soumen662355:
thank you
Answered by
19
Answer:
Step-by-step explanation:
( x + y ) / ( 3a - b ) .........( 1 )
( y + z ) / ( 3b - c ) .........( 2 )
( z + x ) / ( 3c - a ) .........( 3 )
Add equation 1, 2 and 3
( 2x + 2y + 2z ) / (3a - b + 3b - c + 3c - a )
= ( 2x + 2y + 2z ) / ( 2a + 2b + 2c )
= [ 2 ( x + y + z ) ] / [ 2 ( a + b + c )
= ( x+ y + z ) / ( a + b +c )
= ( x / a ) = ( y / b ) = ( z / c )
⇒ ax / a² = by / b² = cz / c²
= ( ax + by + cz ) / ( a² + b² + c² )
It proves ( x+ y + z ) / ( a + b +c ) = ( ax + by + cz ) / ( a² + b² + c² )
Similar questions