If x+y/3a-b=y+z/3b-c=z+x/3c-a , then show that x+y+z/a+b+c=ax+by+cz/a^2+b^2+c^2.
Answers
||✪✪ QUESTION ✪✪||
If x+y/3a-b=y+z/3b-c=z+x/3c-a , then show that x+y+z/a+b+c=ax+by+cz/a^2+b^2+c^2. ?
|| ✰✰ ANSWER ✰✰ ||
Given That :-
→ (x+y/3a-b) = (y+z/3b-c) = (z+x/3c-a)
Now, According to Ratio and proportion :-
If a/x = b/y = c/z , Than , they are also Equal to , (a + b + c)/(x + y + z) .
So,
→ (x+y/3a-b) = (y+z/3b-c) = (z+x/3c-a)
→ ( x + y + y + z + z + x) / (3a - b + 3b - c + 3c - a)
→ (2x + 2y + 2z) / ( 2a + 2b + 2c)
→ 2(x + y + z) /2(a + b + c)
→ (x + y + z) /(a + b + c) --------- Equation (1)
Again, Using Same concept in reverse, we can say That ,
→ (x/a) + (y/b) + (z/c)
Now, Multiply and divide Each Term by a , b and c ,
→ (ax/a²) + (by/b²) + (cz/c²)
Using same Ratio and proportional ,
→ (ax+by+cz) / (a² + b² + c²) --------- Equation (2)
Hence, From Equation (1) & (2) ,
→ (x + y + z) /(a + b + c) = (ax+by+cz) / (a² + b² + c²)
✪✪ Proved ✪✪
Given:
★ x+y/3a-b=y+z/3b-c=z+x/3c-a
To Prove:
★ x+y+z/a+b+c= ax+by+cz/a²+b²+c²
Proof:
★ Applying rule of identity
a1/b1=a2/b2=a3/b3
→ (a1+a2+a3)/(b1+b2+b3) .....(1)
→(a1-a2+a3)/(b1-b3+b1).......(2)
→(a2-a3+a1)/(b2-b3+b1).....(3)
→(a3-a1+a2)/(b3-b1+b2).....(4)
★ Now, apply to the given equation
x+y/3a-b=y+z/3b-c=z+x/3c-a
→ x+y+y+z+z+x/3a-b+3b-3c-a....using (1)
=x+y+z/a+b+c
→x+y-y-z+z+x/3a-b-3b-c+3c-a.....by(2)
→2x/2a-4b+4c
→x/a-2b+2c
→ax/a²-2ab+2ac .....result A
→y+z-z-x+x+y/3b-c-3c+3a-b.....by(3)
→2y/2b-4c+4a
→y/b-2c+2a
→by/b²-2bc+2ab.....result B
→z+x-x-y+y+z/3c-a+b+3b-c
→z/c-2a-2b
=cz/c²-2ca+2bc.....result C
★Now adding result A, B and C;
= ax+by+cz/(a²-2ab+2ca)+(b²-2bc+2ab)+(c²-2ca+2bc)
= ax+by+cz/a²+b²+c²