if x+y+4=0,then find the value of x^3+y^3+64-12xy
Answers
Answered by
6
x+y+4=0
let 4 = z
x^3+y^3+64-12xy=x+y+z-3xyz
x^3+y^3+4^3-3(x)(y)(4)=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
x^3+y^3+4^3-3(x)(y)(4)=(x+y+4)(x^2+y^2+4^2-xy-4y-4x)
Put x+y+4=0
x^3+y^3+64-12xy=0(x^2+y^2+16-xy-4y+4x)
x^3+y^3+64-12xy=0
Answer is 0
Hope you would like the answer :)
let 4 = z
x^3+y^3+64-12xy=x+y+z-3xyz
x^3+y^3+4^3-3(x)(y)(4)=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
x^3+y^3+4^3-3(x)(y)(4)=(x+y+4)(x^2+y^2+4^2-xy-4y-4x)
Put x+y+4=0
x^3+y^3+64-12xy=0(x^2+y^2+16-xy-4y+4x)
x^3+y^3+64-12xy=0
Answer is 0
Hope you would like the answer :)
Similar questions