Math, asked by skgaming9931157943, 1 month ago

if x+y =4 and xy=2 find x²+y²​

Attachments:

Answers

Answered by Anonymous
77

Answer

  • x² + y² = 12

Given

  • x + y = 4 and xy = 2

To Find

  • The value of x² + y²

Step By Step Explanation

It is given that => x + y = 4 and xy = 2

We need to find the value of x² + y²

So let's do it !!

Using Identity

 \maltese\boxed{ \tt{ \red{{(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}}

By substituting the values

\longmapsto \sf{(4)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2(2) \\  \\ \longmapsto \sf 16 =  {x}^{2}  +  {y}^{2}  + 4 \\  \\ \longmapsto \sf16 - 4 =  {x}^{2}   +  {y}^{2}  \\  \\ \longmapsto {\bf{ \green{12 =  {x}^{2}  +  {y}^{2} }}}

Therefore, + = 12

Extra Identities

  • x² - y² = ( x - y ) ( x + y )

  • ( x + y )² = x² + y² + 2xy

  • ( x - y )² = x² + y² - 2xy

  • ( x + a ) ( x + b ) = x² + x( a + b ) + ab

__________________________

Answered by Anonymous
38

_______________________

 \sf \small \red{given : }

 \:  \:  \:  \:  \:  \:  \sf\cdot  \: x+y =4  \: and  \: xy=2

\sf\small\red{Find:-}

 \:  \:  \:  \: \:  \:  \:  \ \sf \cdot \: Find \:  {x}^{2}  +  {y}^{2}

\sf\small\red{Identify:-}

 \:  \:  \:  \sf \:  \:  \: \cdot   {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

\sf\small\red{Solution:-}

 \sf\leadsto  {(4)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2(2)

\sf\leadsto 16  =  {x}^{2}  +  {y}^{2}  + 2(2)

\sf\leadsto {x}^{2}  +  {y}^{2}  = 16  - 4

 \dashrightarrow \sf\ {x}^{2}  +  {y}^{2}  = 12 \dashleftarrow

_______________________

Similar questions