Math, asked by akshatojha007, 7 months ago

If x+y=4. And xy=6. Find x²+y² *

Answers

Answered by sharma41abhay
3

Answer:

x^{2}  +y^{2} = 4

Step-by-step explanation:

x + y = 4    

[on squaring both sides }

(x+y)^{2}  = 4^{2}

x^{2}  +y^{2}  + 2xy = 16

x^{2}  + y^{2} + 2(xy) = 16               [ xy = 6]

x^{2} + y^{2} + 2(6) = 16

x^{2} +y^{2} + 12 = 16

x^{2} +y^{2}  = 16 - 12\\x^{2}  + y^{2} = 4

PLEASE MARK IT AS BRAINLIEST

Answered by rashmitadas118
0

Answer:

4 .

Step-by-step explanation:

Good afternoon...

FOLLOW for a follow back....

my new acc.

here is your ANSWER......

x + y = 4 \\ xy = 6 \\ =  >   {(x + y)}^{2} =  {(4)}^{2}   \\  =  >  {x}^{2} +  {y}^{2} + 2xy = 16 \\  =  >  {x}^{2}  +  {y}^{2} +2 (6) = 16 \\  =  >  {x}^{2}  +  {y}^{2}  = 16 - 12 \\  =  >  {x}^{2}  \:  \:  \:  +  \:  \:  \:  {y}^{2}  \:  \:  =  \:  \: 4

Similar questions