if x+y=π\4 than find the value of (1+tan x)(1+tan y)
Answers
Answered by
1
Answer:
Given,
x + y = \frac{\pi}{4}x+y=4π
= > tan(x + y) = tan \frac{\pi}{4}=>tan(x+y)=tan4π
\frac{tanx + tany}{1 - tanx.tany} = 11−tanx.tanytanx+tany=1
tan x + tan y = 1 - tan x tan y
tan x + tan y + tan x tan y = 1
Adding 1 on both sides
1 + tan x + tan y + tan x tan y = 2
(1+tan x) + tan y (1+tan x)
☆_________________________
==> ( 1+tan x) ( 1+ tan y) = 2
_________________________☆
Similar questions
Chemistry,
3 months ago
India Languages,
3 months ago
Math,
6 months ago
Hindi,
11 months ago
Chemistry,
11 months ago