Math, asked by Ashvendra, 2 months ago

if x+y=4,then find the value of x3+y3+12xy-64​

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

We know that

 \red{\rm :\longmapsto\:If \: a + b + c = 0 \: then \: }

 \red{\rm :\longmapsto\: {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc}

Here,

Given that

\rm :\longmapsto\:x + y = 4

can be rewritten as

\rm :\longmapsto\:x + y - 4 = 0

Now, using the above identity, we get

\rm :\implies\: {x}^{3} +  {y}^{3} +  {( - 4)}^{3} = 3(x)(y)( - 4)

\rm :\implies\: {x}^{3} +  {y}^{3}  - 64 =  - 12xy

\rm :\implies\: {x}^{3} +  {y}^{3}  + 12xy - 64 =  0

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{\: {x}^{3} +  {y}^{3}  + 12xy - 64 =  0}}}

More Identities to know:

1. (a + b)² = a² + 2ab + b²

2. (a - b)² = a² - 2ab + b²

3. a² - b² = (a + b)(a - b)

4. (a + b)² = (a - b)² + 4ab

5. (a - b)² = (a + b)² - 4ab

6. (a + b)² + (a - b)² = 2(a² + b²)

7. (a + b)³ = a³ + b³ + 3ab(a + b)

8. (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions