If x + y = 45°, prove that:
(cot x + 1)(cot y +1) / (cot x.cot y) = 2
Answers
Answered by
0
Answer:
Step-by-step explanation:
On the left side:
cot(x+y) = (cotx*coty - 1)/(cotx + coty) = 1
cotx * coty - 1 = cotx + coty
cotx * coty = 1 + cotx + coty
1 = (1 + cotx + coty)/(cotx * coty)
On the right side:
(cotx+1)(coty+1)/(cotx * coty)
= (cotx * coty + cotx + coty + 1)/(cotx * coty)
= 1 + (1 + cotx + coty)/(cotx * coty)
Look back at the left side. What we now have is just
= 1+1
= 2
mark me brainlist plz
Similar questions