If X+y= 48 and xy=200 swhat is the value of x2+y2=?
Answers
Answer:
HEY THERE!
Step-by-step explanation:
xy=200—equation 1
x=200/y
x-y=100—equation 2
putting the value of x in equation 2
=>x-y=100
=>200/y - y=100
=>200-y²/y=100
=>200-y²=100y
=>-y²-100y+200=0
=>y²+100y-200=0(taking — common)
Now,
a=1; b=100; c=-200
Y= {-b+√(b²-4ac)}/2a
= {-100+√(100²-4×1×-200)}/2×1
={-100+√(10000+800)}/2
=(-100+√10800)/2
=(-100+60√3)/2
=20(-5+3√3)/2
=10(-5+3√3)
=+- 30√3–50
So the value of y is +30√3–50 or -30√3-50
Putting the value of y in equation 1
xy=200
x=200/y
x=200/(30√3–50) or 200/(-30√3-50)
=200/2(15√3–25) or 200/2(-15√3–25)
=100/(15√3–25) or 100/(-15√3–25)
So the value of x is 100/(15√3–25) or 100/(-15√3–25)
ANOTHER METHOD OF SOLVING THIS IS:
xy=200—equation 1
x=200/y
x-y=100—equation 2
putting the value of x in equation 2
=>x-y=100
=>200/y - y=100
=>200-y²/y=100
=>200-y²=100y
=>-y²-100y+200=0
=>y²+100y-200=0(taking — common)
Now,
a=1; b=100; c=-200
Y= {-b+√(b²-4ac)}/2a
= {-100+√(100²-4×1×-200)}/2×1
={-100+√(10000+800)}/2
=(-100+√10800)/2
=(-100+60√3)/2
=20(-5+3√3)/2
=10(-5+3√3)
=+- 30√3–50
So the value of y is +30√3–50 or -30√3-50
Putting the value of y in equation 1
xy=200
x=200/y
x=200/(30√3–50) or 200/(-30√3-50)
=200/2(15√3–25) or 200/2(-15√3–25)
=100/(15√3–25) or 100/(-15√3–25)
So the value of x is 100/(15√3–25) or 100/(-15√3–25)
ANOTHER METHOD TO SOLVE THIS IS :
solve
xy = 200
and x-y = 100
then
x = 200/y
x-y = 100
200/y-y = 100
(200-y^2)/y = 100
200-y^2 = 100*y
y^2–200+100y
y^2+100y-200
quadratic equation formula
Y=1.96
again
x-y = 100
x-1.96 = 100
x = 101.96
514 views
solve
xy = 200
and x-y = 100
then
x = 200/y
x-y = 100
200/y-y = 100
(200-y^2)/y = 100
200-y^2 = 100*y
y^2–200+100y
y^2+100y-200
quadratic equation formula
Y=1.96
again
x-y = 100
x-1.96 = 100
x = 101.96
Answer:
1904
Explanation:
Given that,
x + y = 48 and xy = 200