If x-y =(4n-1)π/4. (where n is an integer) and x+y is not an odd multiple of π/2 then the value of the expression sin2x-sin2y/cos2x+cos2y
Answers
Given that,
Consider the expression
We know,
So, using these results, we get
As it is given that
So, on substituting these values in above expression, we get
Hence,
Additional information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that,
\begin{gathered} \red{\rm x - y = (4n - 1)\dfrac{\pi}{4} \: and \: x + y \ne(2n - 1) \frac{\pi}{2} \: \: \forall \: n \: \in \: Z} \\ \end{gathered}
x−y=(4n−1)
4
π
andx+y
=(2n−1)
2
π
∀n∈Z
Consider the expression
\begin{gathered}\rm \: \dfrac{sin2x - sin2y}{cos2x + cos2y} \\ \end{gathered}
cos2x+cos2y
sin2x−sin2y
We know,
\begin{gathered}\boxed{ \rm{ \:sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\ \end{gathered}
sinx−siny=2cos[
2
x+y
]sin[
2
x−y
]
\begin{gathered}\boxed{ \rm{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\ \end{gathered}
cosx+cosy=2cos[
2
x+y
]cos[
2
x−y
]
So, using these results, we get
\begin{gathered}\rm \: = \: \dfrac{2cos\bigg[\dfrac{2x + 2y}{2} \bigg]sin\bigg[\dfrac{2x - 2y}{2} \bigg]}{2cos\bigg[\dfrac{2x + 2y}{2} \bigg]cos\bigg[\dfrac{2x - 2y}{2} \bigg]} \\ \end{gathered}
=
2cos[
2
2x+2y
]cos[
2
2x−2y
]
2cos[
2
2x+2y
]sin[
2
2x−2y
]
\begin{gathered}\rm \: = \: \dfrac{sin(x - y)}{cos(x - y)} \\ \end{gathered}
=
cos(x−y)
sin(x−y)
\begin{gathered}\rm \: = \: tan(x - y) \\ \end{gathered}
=tan(x−y)
As it is given that
\begin{gathered} \red{\rm \: x - y = (4n - 1)\dfrac{\pi}{4} \: \: \forall \: n \: \in \: Z \: } \\ \end{gathered}
x−y=(4n−1)
4
π
∀n∈Z
\begin{gathered} \red{\rm \: x - y = n\pi - \dfrac{\pi}{4} \: \: \forall \: n \: \in \: Z \: } \\ \end{gathered}
x−y=nπ−
4
π
∀n∈Z
So, on substituting these values in above expression, we get
\begin{gathered}\rm \: = \: tan\bigg(n\pi - \dfrac{\pi}{4} \bigg) \\ \end{gathered}
=tan(nπ−
4
π
)
\begin{gathered}\rm \: = \: - \: tan\dfrac{\pi}{4} \\ \end{gathered}
=−tan
4
π
\begin{gathered} \red{[ \because \: tan(n\pi - x) = \: - \: tanx \: ]} \\ \end{gathered}
[∵tan(nπ−x)=−tanx]
\begin{gathered}\rm \: = \: - \: 1 \\ \end{gathered}
=−1
Hence,
\begin{gathered}\boxed{\rm{ \:\dfrac{sin2x - sin2y}{cos2x + cos2y} = - 1, \: if \: x - y = (4n - 1)\dfrac{\pi}{4} \:\forall \: n \in Z}}\\ \end{gathered}
cos2x+cos2y
sin2x−sin2y
=−1,ifx−y=(4n−1)
4
π
∀n∈Z
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
T−eq
sinx=0
cosx=0
tanx=0
sinx=siny
cosx=cosy
tanx=tany
Solution
x=nπ∀n∈Z
x=(2n+1)
2
π
∀n∈Z
x=nπ∀n∈Z
x=nπ+(−1)
n
y∀n∈Z
x=2nπ±y∀n∈Z
x=nπ+y∀n∈Z