If x+y= 5 & xy= 10 find the value of x^2 + y^2
Answers
Answered by
0
Answer:
Given: x+y = 5 and xy = 10
Find: x and y
soln:
Consider x = 5-y
xy = 10
(5-y)y = 10
5y-y^2 = 10
0 = y^2 -5y +10
The roots can be finded by the equation
-b +- Sqrt(b^2 -4ac)/2a
5 + Sqrt((-5)^2 -4*1*10)/2*1
5 + Sqrt(25–40)/2
5 + Sqrt(-15)/2
5 + (-3.87)/2
5 + -1.935
3.065
5 - Sqrt((-5)^2 -4*1*10)/2*1
5 - Sqrt(25–40)/2
5 - Sqrt(-15)/2
5 - (-3.87)/2
5 - (-5 + Sqrt((-5)^2 -4*1*10)/2*1
5 + Sqrt(25–40)/2
5 + Sqrt(-15)/2
5 + (-3.87)/2
5 + -1.935)
5 + 1.935
6.935
y = 6.935 , 3.065
xy = 10 [Given]
x = 5-y
x = 5–6.935 = - 1.935
x = 5–3.065 = 1.935
Hence x= - 1.935, 1.935; y= 6.935 , 3.065 : Final Answer
Answered by
0
Step-by-step explanation:
x+y=5
taking square on both side
(x+y)²=5²
open the square
x²+y²+2xy=25
since xy=10
x²+y²+2(10)=25
x²+y²+20=25
x²+y²=25-20
x²+y²=5
Similar questions