If x + y = 5 and xy = 10, what are the value of x^ and y^?
Answers
Answered by
1
x, y={7 1/2, -5/2}
PREMISES
x, y={ }, if x+y=5 and x-y=10
Sufficient Conditions:
x+y=5 and x-y=10 (a system of equations)
CALCULATIONS
(x-y=10)-(x+y=5)
0x-2y=5
-2y=5
-2y/-2=5/-2
y=
-5/2 or -2 1/2 or -2.5
And, if y=-5/2, then by substitution,
x+y=5
x+(-5/2)=5
x+(-5/2+5/2)=5+(5/2)
x+0=5+(5/2) (Convert 5/2 to the mixed fraction 2 1/2 to make the math easier)
x=5+(2 1/2)(
x=
7 1/2 or 15/2 or 7.5
PROOF
If x, y={7 1/2, -5/2}, then the equations
(x-y=10)-(x+y=5) becomes
[(7 1/2)-(-5/2)]-[(7 1/2)+(-5/2)]=10–5
[(7 1/2)+(5/2)]-[(7 1/2)-(5/2)]=10–5
10–5=10–5 and
5=5 establish the roots (zeroes) x, y={7 1/2, -5/2} of the compound statement x+y=5, x-y=10 in the premises above
Answered by
3
Step-by-step explanation:
step by step solution in photo
Attachments:
Similar questions