Math, asked by ravalusha49, 10 months ago

if x+y=5 and xy =-1then find the value of x^2+y^2​

Answers

Answered by Skyllen
2

Given

  • x + y = 5
  • xy = -1

 \\

To Find

  • x² + y²

 \\

Solution

 \tt \implies \: x  + y = 5 \\ \tt \implies \: (x + y) {}^{2}  = (5) {}^{2} .........(squaring \: both \: sides) \\ \tt \implies \: x {}^{2}  + y {}^{2}  + 2xy = 25 \\ \: \tt \implies \:  x {}^{2}  + y {}^{2}  + 2( - 1) = 25...........(given \: xy =  - 1) \\ \tt \implies \: x {}^{2}  + y {}^{2}  - 2 = 25 \\\tt \implies \:  x {}^{2}  + y {}^{2}  = 25 + 2

 \large \implies \boxed {\boxed {\tt \blue {x {}^{2}   + y {}^{2}  = 27 }}}\\ \\

Final Answer

+ = 27

 \\

Used identity

(x+y)² = + +2xy

Answered by InfiniteSoul
3

{\underline{\huge{\mathbf{\color{pink}{Question}}}}}

if x+y=5 and xy =-1then find the value of x^2+y^2

{\underline{\huge{\mathbf{\color{pink}{solution}}}}}

Given :-

x + y = 5

xy = -1

To find :-

 x^2 + y^2

Formulae used:-

 (x+y)^2 = x^2 + y^2 + 2xy

step by step solution :-

(5)^2 = x^2 + y^2 + 2*-1

 25 = x^ 2 + y^2 -2

 x^2 + y^2 = 25 + 2

 x^2 + y^2 = 27

_________________________❤

Thank you ❤

Similar questions