if x - y =5 and xy=24, find the value of (x+y)
Answers
Answered by
29
Answer :-
Solution :-
x - y = 5
xy = 24
We know that,
(x + y)² = (x - y)² + 4xy
Putting the values
=> (x + y)² = (5)² + 4 × 24
=> (x + y)² = 25 + 96
=> (x + y)² = 121
=> (x + y) = √121
=> (x + y) = 11
Hence the value of (x + y) is 11 respectively.
Answered by
12
Answer :-
The value of x + y is 11
Solution :-
We know that
(x + y)² = (x - y)² + 4xy
Here
• x - y = 5
• xy = 24
By substituting the values
⇒ (x + y)² = (5)² + 4(24)
⇒ (x + y)² = 25 + 96
⇒ (x + y)² = 121
⇒ x + y = √121
⇒ x + y = 121
Alternate way of solving
We know that
(x - y)² = x² + y² - 2xy
Here
• x - y = 5
• xy = 24
By substituting the values
⇒ (5)² = x² + y² - 2(24)
⇒ 25 = x² + y² - 48
⇒ 25 + 48 = x² + y²
⇒ x² + y² = 73
We know that
(x + y)² = x² + y² + 2xy
Here
• x² + y² = 73
• xy = 24
By substituting the values
⇒ (x + y)² = 73 + 2(24)
⇒ (x + y)² = 73 + 48
⇒ (x + y)² = 121
⇒ x + y = √121
⇒ x + y = 11
Therefore the value of x + y is 11.
Similar questions