If x+y=5 and xy=4, find x^2+y^2
Answers
Answered by
0
Answer:
SOLUTION -
if x+y = 5 & xy = 4
now
(x+y)² = x²+2xy+y² (on squaring both sides)
(5)² = x² + 2×(4) + y² ( on putting the values of x+y & xy )
25 = x²+8+y²
x²+y² = 25–8
x²+y² = 17
now ,
(x-y)² = x² - 2xy + y²
(x-y)² = (x²+y²) - 2xy
on putting the values of x²+y² & xy
(x-y)² = 17 - 2(4)
(x-y)² = 17–8
(x-y)² = 9
(x-y) = √9
(x-y) = 3 ANSWER
Answered by
0
Answer:
17
Step-by-step explanation:
x+y=5
then,x=5-y....(1)
Xy=4
y×(5-y)=4
5y-y^2=4
y^2-5y+4=0
y=1,4
if y=1,x=5-1=4
if y=4,x=5-4=1
x^2+y^2=1^2+4^2
x^2+y^2=1+16=17
Similar questions