Math, asked by lisha160, 6 months ago

If x+y = 5 and xy = 6. Find the value of x^2 + y^2 and x-y. ​

Answers

Answered by Asterinn
5

Given :

  • x+y = 5

  • xy = 6

To find :

  • x²+y²

  • x-y

Solution :

we know :-

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} + 2xy

Now, to find (x²+y²) put :-

  • x+y = 5

  • xy = 6

 \implies {(5)}^{2}  =  {x}^{2}  +  {y}^{2} + (2 \times 6)

\implies 25  =  {x}^{2}  +  {y}^{2} + 12

\implies 25   - 12=  {x}^{2}  +  {y}^{2}

\implies 13=  {x}^{2}  +  {y}^{2}

Now we will find x-y.

we know that :-

{(x  - y)}^{2}  =  {x}^{2}  +  {y}^{2}  -  2xy

Now, to find (x-y) put :-

  • x²+y² = 13

  • xy = 6

\implies{(x  - y)}^{2}  =  13-  (2 \times 6)

\implies{(x  - y)}^{2}  =  13- 12

\implies{(x  - y)}^{2}  =  1

\implies{(x  - y)} =   \sqrt{1}

\implies{(x  - y)}=   \pm1

Answer :

{x}^{2}  +  {y}^{2}  = 13

{(x  - y)}=   \pm1

_______________________

\large\bf\red{Learn\:More}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_________________________

Similar questions