Math, asked by swapskotangale89, 4 months ago

if x+y = 5 , xy = 18, then value x3+y3​

Answers

Answered by MotiSani
6

Given:

x+y = 5 , xy = 18

To Find:

x³+y³​

Solution:

We will use the following algebric identity:-

(a +b)³ = a³ + b³ + 3ab(a + b)..........(i)

Rearranging the above equation, we get,

a³ + b³ = (a + b)³ - 3ab (a +b)

According to the question, x =a and y = b; subsituting these values in eq(i),

x³ +y³ = (x +y)³ - 3xy(x + y)..........(ii)

Since, x+y = 5 and xy = 18  (Given)

Putting these values in eq(ii), we get

    x³ +y³ = (5)³ - 3(18)(5)

⇒  x³ +y³ = (125 - 270) = - 145

Hence, the value of  x³ +y³ is -145.

Answered by pulakmath007
14

SOLUTION

GIVEN

 \sf{x + y = 5 \:  \:  \: and \:  \: xy = 18}

TO DETERMINE

 \sf{ {x}^{3} +  {y}^{ 3}  }

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf{ {(x + y)}^{3} =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2} +  {y}^{3}   }

EVALUATION

Here it is given that

 \sf{x + y = 5}

Cubing both sides we get

 \sf{ {(x + y)}^{3} = {(5)}^{3}    }

 \implies \:  \sf{  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2} +  {y}^{3}  = 125  }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3} + 3 {x}^{2} y + 3x {y}^{2}  = 125  }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3} +  3xy(x + y)  = 125  }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3} +(  3 \times 18 \times 5)  = 125  }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3} +270  = 125  }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3}  = 125  - 270 }

 \implies \:  \sf{  {x}^{3}   +  {y}^{3}  = - 145 }

FINAL ANSWER

 \boxed{ \:  \:  \:  \sf{  {x}^{3}   +  {y}^{3}  = - 145 } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression

a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

3. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

Similar questions