if x-y=5, xy=24 then find the value of x³- y³=
Answers
Answered by
1
Step-by-step explanation:
let a= x and b= y
by using identity (a^3-b^3= (a-b)^3 +3ab(a-b)
x^3-y^3 =(5)^3 +3×24(5)
x^3-y^3= 125+510
= 635
Answered by
3
✯ Answer:
x³ - y³ = 485
✯ Step-by-step explanation:
Given:
- x - y = 5
- xy = 24
To find:
→ x³ - y³ = ?
Solution:
(x - y) = 5
Squaring on both sides,
(x - y)² = 5²
➵ x² + y² - 2xy = 25
⇒ x² + y² - 2(24) = 25
⇒ x² + y² - 48 = 25
⇒ x² + y² = 25 + 48
⇒ x² + y² = 73
Now,
☞ x³ - y³ = (x - y) (x² + xy + y²)
➟ x³ - y³ = (x - y) (x² + y² + xy)
➥ x³ - y³ = (x - y) [(x² + y²) + xy]
↦ x³ - y³ = (5) (73 + 24)
⇢ x³ - y³ = 5 × 97
➪ x³ - y³ = 485
∴ x³ - y³ = 485
Similar questions