Math, asked by Hngjng6631, 9 months ago

if X+Y=5 XY find X-Y using identities

Answers

Answered by amankumaraman11
0

 \huge \mathbb{ \pink{Q} \red{U}\pink{E}\red{S}\pink{T}\red{I}\pink{O}\red{N} : }

  • If x + y = 5, xy = 4, find x - y (using identities).

 \huge \text{A\green{N}S\green{W}E\green{R} :}

Here,

x + y = 5

  • Squaring both sides,

→ (x + y)² = 5²

→ x² + y² + 2xy = 25

→ x² + y² + 2(4) = 25

→ x² + y² + 8 = 25

→ x² + y² = 25 + 8

→ x² + y² = 33

Now,

 \rm{}x - y  \:  \:  \: =  {(x - y)}^{2}  \\  \\  \sf =  >  {x}^{2}  +  {y}^{2}  - 2xy

  • Putting the values in above expression, we get,

 \large \bf =  > 33 + 2(4)  \\  \large \bf =  > \: 33 + 16  \\  \large \bf =  > \:  \:  \red{49}

<bold>___________________________</bold>

♦ Some Identities --

  • (x + y)² = x² + y² + 2xy
  • (x - y)² = x² + y² - 2xy
  • x² - y² = (x + y)(x - y)
  • x² + y² = (x + y)² -2xy
  • (x + a)(x + b) = x² +(a + b)x + ab
  • (x + y)³ = x³ + y³ + 3xy(x + y)
  • (x - y)³ = x³ - y³ - 3xy(x - y)
  • x³ - y³ = (x - y)(x² + y² + xy)
  • x³ + y³ = (x + y)(x² + y² - xy)
Similar questions