Math, asked by Saikiran5481, 1 year ago

If (x/y) = (6/5), find the value (x2+y2)/(x2-y2)

Answers

Answered by Bharathsimha
33
x/y=6
x=6y/5
(x2+y2)/(x2-y2)=(36y2/25+y2)/(36y2/25-y2)
=61/11
Answered by mysticd
28

Answer:

Value of \frac{x^{2}+y^{2}}{x^{2}-y^{2}} = \frac{61}{11}

Explanation:

Given \frac{x}{y}=\frac{6}{5} ---(1)

\implies \left(\frac{x}{y}\right)^{2}=\left(\frac{6}{5}\right)^{2}

\implies \left(\frac{x}{y}\right)^{2}=\frac{36}{25} ---(2)

Now ,

Value of \frac{x^{2}+y^{2}}{x^{2}-y^{2}}

Divide numerator and denominator by , we get

=\frac{\frac{x^{2}}{y^{2}}+\frac{y^{2}}{y^{2}}}{\frac{x^{2}}{y^{2}}-\frac{y^{2}}{y^{2}}}

= \frac{\left(\frac{x}{y}\right)^{2}+1}{\left(\frac{x}{y}\right)^{2}-1}

= \frac{\frac{36}{25}+1}{\frac{36}{25}-1}

/* from (2) */

= \frac{\frac{(36+25)}{25}}{\frac{36-25}{25}}

= \frac{\frac{61}{25}}{\frac{11}{25}}

After cancellation, we get

= \frac{61}{11}

Therefore,

Value of \frac{x^{2}+y^{2}}{x^{2}-y^{2}} = \frac{61}{11}

•••••

Similar questions