If x + y = 6 and x - y = 4, find () x2 + y2 (ii) xy.
Hint (1) 4xy = (x + y)2 - (x - y)2
Answers
Answered by
53
Answer:
x² + y² = 26
xy = 5
Step-by-step explanation:
Given that:
x + y = 6
x - y = 4
(i) x² + y² = ?
(ii) xy = ?
Use the hint: 4xy = (x + y)² - (x - y)²
⇒ 4xy = (6)² - (4)²
⇒ 4xy = 36 - 16 = 20
⇒ xy = 20/4
⇒ xy = 5
x + y = 6
⇒ (x + y)² = (6)²
⇒ x² + y² + 2xy = 36
⇒ x² + y² + 2×5 = 36
⇒ x² + y² + 10 = 36
⇒ x² + y² = 36 - 10
⇒ x² + y² = 26
Answered by
52
QUESTIONS:
If x + y = 6 & x - y = 4 , the find
- (i) x² + y²
- (ii) xy
GIVEN:
- x + y = 6
- x - y = 4
- Hint: 4xy = (x + y)² - (x - y)²
SOLUTION:
Using the given hint
4xy = (x + y)² - (x - y)²
Substituting the value of x + y & x - y
→ 4xy = 6² - 4²
→ 4xy = 36 - 16
→ 4xy = 20
→ xy = 20/4
→ xy = 5
xy = 5
Finding x² + y²
Using
a² + b² = (a + b)² - 2ab
Similarly
x² + y² = (x + y)² - 2xy
Substituting the values of x + y & xy
→ x² + y² = 6² - 2(5)
→ x² + y² = 36 - 10
→ x² + y² = 26
x² + y² = 26
Hence, xy = 5 & x² + y² = 26
Similar questions