Math, asked by mahiroy3636, 9 months ago

If X-Y = 7 and XY= -1 than the value of (X+Y)² is​

Answers

Answered by vishwanthnani
1

THEREFORE YOUR ANSWER IS 45.

I hope you are satisfied by my answer.

Attachments:
Answered by atahrv
42

Answer :

\large{ \star\:\:\boxed{\bf{x^{2}\:\:+\:\:y^{2}\:\:=\:\:45}}\:\:\star }

Explanation :

Given :–

  • x - y = 7
  • (x) × (y) = xy = (-1)

To Find :–

  • The numerical value of (x + y)²

Formula Applied :–

  • \boxed{\star\:\:\bf{(a\:-\:b)^2\:=\:a^2\:-\:2ab\:+\:b^2}\:\:\star}
  • \boxed{\star\:\:\bf{(a\:+\:b)^2\:=\:a^2\:+\:2ab\:+\:b^2}\:\:\star}

Solution :–

We have,

  • x - y = 7
  • xy = (-1)

Putting these values in the Formula :

\rightarrow\sf{(x\:-\:y)^2\:=\:x^2\:-\:2xy\:+\:y^2}

\rightarrow\sf{(7)^2\:=\:x^2\:-\:[2\:\times\:(-1)]\:+\:y^2}

\rightarrow\sf{49\:=\:x^2\:-\:(-2)\:+\:y^2}

\rightarrow\sf{49\:=\:x^2\:+\:2\:+\:y^2}

\rightarrow\sf{x^2\:+\:y^2\:=\:49\:-\:2}

\rightarrow\sf{x^2\:+\:y^2\:=\:47}

Now , we have ,

  • x² + y² = 47
  • xy = (-1)

Putting these values in the Formula :

\rightarrow\sf{(x\:+\:y)^2\:=\:x^2\:+\:2xy\:+\:y^2}

\rightarrow\sf{(x\:+\:y)^2\:=\:(x^2\:+\:y^2)\:+\:2xy}

\rightarrow\sf{(x\:+\:y)^2\:=\:(47)\:+\:[2\:\times\:(-1)]}

\rightarrow\sf{(x\:+\:y)^2\:=\:47\:-\:2}

\rightarrow\boxed{\bf{(x\:+\:y)^2\:=\:45}}

∴ The value of x² + y² is 45 .

Similar questions