if (x+y) = 7 and xy = 5 find the value of (x² + y²)
Answers
Answered by
1
Answer:
The answer is 39
Step-by-step explanation:
Given and
Using the algebraic identity
Answered by
5
EXPLANATION.
⇒ x + y = 7. - - - - - (1).
⇒ xy = 5. - - - - - (2).
As we know that,
Formula of :
⇒ (a² + b²) = (a + b)² - 2ab.
Put the values in the equation, we get.
⇒ (x² + y²) = (x + y)² - 2xy.
⇒ (x² + y²) = (7)² - 2(5).
⇒ (x² + y²) = 49 - 10.
⇒ (x² + y²) = 39.
MORE INFORMATION.
(1) (x + y)² = x² + y² + 2xy.
(2) (x - y)² = x² + y² - 2xy.
(3) (x² - y²) = (x + y)(x - y).
(4) (x² + y²) = (x + y)² - 2xy.
(5) (x³ - y³) = (x - y)(x² + xy + y²).
(6) (x³ + y³) = (x + y)(x² - xy + y²).
(7) (x + y)³ = x³ + 3x²y + 3xy² + y³.
(8) (x - y)³ = x³ - 3x²y + 3xy² - y³.
Similar questions