Math, asked by anushree397dhale, 6 months ago

If x-y=7 and xy=9, find the value of x²+y².​

Answers

Answered by Anonymous
21

 \bf \LARGE \color{pink}Hola!

GiveN :

 \sf \mapsto \: (x - y) = 7

 \sf \mapsto \: xy = 9

To FinD :

 \sf \mapsto \:  {x}^{2}  +  {y}^{2}  =  {?}

SolutioN :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  {(x - y)}^{2}  = 7^{2}

 \implies \sf \:  {x}^{2}  +  {y}^{2}  - 2xy = 49

 \sf \implies \:  {x}^{2}  +  {y}^{2}  - 2 \times 9 = 49 \:  \:  \:  \:  \:  \bf[ \:  Given   \:  \:  ;\: \: xy = 9 \: ]

 \:  \:  \:  \:  \:  \:  \:  \:  \sf \therefore{ \underline{ \boxed {\sf{ {x}^{2}  +  {y}^{2}  =   67}}}}

___________________

HOPE THIS IS HELPFUL...

Answered by Anonymous
16

hello mate...

Answer...

Given

  • x - y = 7
  • xy = 9

To Find

  • Find the value of x²+y²

Solution

[using identity] ( a - b )² = a² - 2ab + b²

x - y = 7

lets squared both sides...

( x - y )² = ( 7 )²

= x² + y² - 2xy = 49

= x² + y² - 2 × 9 = 49

= x² + y² - 18 = 49

= x² + y² = 49 + 18

= x² + y² = 67

Hence,

The value of x² + y² = 67

Similar questions