Math, asked by Badsha3992, 8 months ago

If x+y=8 & xy=15 find the value of (
x^2+y^2)

Answers

Answered by imtiazshaikh211
0

Answer:

(x+y)2=x2+y2+2xy

x^2 + y^2 = ( x + y )^2 - 2xyx2+y2=(x+y)2−2xy

x^2 + y^2= 8^2 - 2×15x2+y2=82−2×15

x^2 + y^2= 64 - 30x2+y2=64−30

x^2 + y^2 = 34.x2+y2=34.

Thus the value of x^2 + y^2 = 34.x2+y2=34.

Similar questions