if x+y =8 and xy= 3 3/4 find the value of 5(x^2+y^2)+4(x-y)
Answers
Step-by-step explanation:
Hi ,
It is given that ,
x + y = 8 ---( 1 )
xy = 15/4 ---( 2 )
( x - y )² = ( x + y )² - 4xy
= 8² - 4 × 15/4
= 64 - 15
( x - y )² = 49
x - y = 7 ---( 3 )
add equation ( 1 ) and ( 3 ) , we get
2x = 8 + 7
2x = 15
x = 15/2
put x = 15/2 in equation ( 1 ) , we get
15/2 + y = 8
y = 8 - 15/2
y = ( 16 - 15 )/2
y = 1/2
Therefore ,
x = 15/2 , y = 1/2
Now ,
i ) x - y = 7 [ from ( 3 ) ]
ii ) 3( x² + y² )
= 3 [ ( x + y )² - 2xy ]
= 3 [ 8² - 2 × 15/4 ]
= 3 [ 64 - 15/2 ]
= 3 ( 128 - 15 )/2
= ( 3 × 113 )/2
= 339/2
iii ) 5[ ( x² + y² ) + 4 ( x - y ) ]
= 5 [ ( x + y )² - 2xy ] + 4 ( x - y ) ]
= 5 [ 8² - 2 × 15/4 ] + 4 × 7
= 5 [ 64 - 15/2 ] + 28
= 5 × 113/2 + 28
= 565/2 + 28
= ( 565 + 56 )/2
= 621/2
I hope this helps you.
: )
Answer:
Here is your answer
kindly see the image above attach for complete solution step by step:-
Given:-x+y=8;xy=15/4
To find the value of:-
Hope it helps you..!!!
_________________
Thankyou:)