if x + y = 8 and xy = 33, find the values of
5(x2 + y2) + 4(x - y).
Answers
Answered by
9
Answer:
= 5[ (x² + y²) + 4(x - y)]
= 5 [(x + y)² - 2xy ] + 4(x - y)]
= 5 [8²-2 × 15/4] + 4 × 7
= 5 [ 64 - 15/2 ] + 28
= 5 x 113/2+28
= 565/2 + 28
= (565 + 56 )/2
= 621/2.
- Please Drop Some Thanks.
Answered by
0
Step-by-step explanation:
= 5[ (x² + y²) + 4(x - y)]
= 5 [(x + y)² - 2xy ] + 4(x - y)]
= 5 [8²-2 × 15/4] + 4 × 7
= 5 [ 64 - 15/2 ] + 28
= 5 x 113/2+28
= 565/2 + 28
= (565 + 56 )/2
= 621/2.
Similar questions