Math, asked by Tricules, 8 months ago

If x + y = 8, x² + y2 = 4, then xy is
8​

Answers

Answered by kartikeyagarwal302
2

Answer:

xy = 30

Step-by-step explanation:

This is ur answer.

Hope this helps u.

Attachments:
Answered by BrainlyConqueror0901
27

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:xy=30}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies x + y = 8 \\  \\ \tt: \implies {x}^{2}  +  {y}^{2}  =4  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies xy =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy \\  \\ \tt:  \implies 4 =  {8}^{2}  - 2xy \\  \\ \tt:  \implies 4 = 64 - 2xy \\  \\ \tt:  \implies 4 - 64 =  - 2xy \\  \\ \tt:  \implies  - 60 =  - 2xy \\  \\ \tt:  \implies xy =  \frac{ - 60}{ - 2}  \\  \\  \green{\tt:  \implies xy = 30} \\  \\   \green{\tt \therefore Value \: of \: xy \: is \: 30} \\  \\  \blue{ \boxed{ \bold{Some \: related \: formula}}} \\    \orange{\tt \circ \:  \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab} \\  \\ \orange{\tt \circ \:  \:  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab} \\  \\ \orange{\tt \circ \:  \:  a^{2}  +  {b}^{2}  =  {(a  - b)}^{2}  + 2ab} \\  \\ \orange{\tt \circ \:  \: {a}^{2}   -   {b}^{2}   =  (a + b)(a - b)} \\  \\ \orange{\tt \circ \:  \:  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3{a}^{2} b +  {3ab}^{2} } \\  \\ \orange{\tt \circ \:  \:  {(a  -  b)}^{3}  =  {a}^{3}   -  {b}^{3}  -  3{a}^{2} b +  {3ab}^{2} }

Similar questions