Math, asked by ShadowplayerLC, 1 year ago

if x+y = 8 , xy = 15 , then the value of x^4+(x^2)( y^2) + y^4

Answers

Answered by AspiringLearner
0

Answer: 1156  Step-by-step explanation:  It is given that x+y = 8 and xy = 15 We need to find the value of x^{4} + x^{2} y^{2} + y^{4}  WKT  (x+y)^{2} = x^{2} + y^{2} + 2xy  Substituting the given values,  8^{2} = x^{2} + y^{2} + 2×15  64 = x^{2} + y^{2} + 30  x^{2} + y^{2} = 64 - 30  ∴x^{2} + y^{2} = 34  Now  (x^{2} + y^{2} )^{2}  = x^{4} + y^{4} + (xy)^{2}  (x^{2} + y^{2} )^{2} = 34^{2}                                              = 1156  ∴(x^{2} + y^{2} )^{2}  = x^{4} + y^{4} + (xy)^{2} = 1156

Similar questions