If x+y=9 and xy=20 find the value of x^3-y^3
Class 9 question
Answers
Answered by
0
(x+y)^3=x^3+y^3 +3xy (x+y)
(9)^3= x^3+y^3 +3×20(9)
729=x^3+y^3+540(after solving it)
x^3 +y^3=729-540
x^3+y^3=189
(9)^3= x^3+y^3 +3×20(9)
729=x^3+y^3+540(after solving it)
x^3 +y^3=729-540
x^3+y^3=189
Answered by
1
x + y = 9 --eq(1) , xy = 20
on squaring both side(eq.1) , we get
(x + y)^2 = (9)^2
x^2 + y^2 + 2xy = 81
x^2 + y^2 + 2(20) = 81
x^2 + y^2 = 81 - 40 = 41
x^2 + y^2 = 41. ______√_________
x^2 + y^2 - 2xy + 2xy = 41
(x - y)^2 + 2xy = 41
( x - y )^2 + 2(20) = 41
( x - y )^2 = 41 - 40
( x - y )^2 = 1 => x - y = 1 __√_______
x^3 - y^3 = ( x - y ) (x^2 + xy+ y^2 )
=1 ( x^2 + 20 + y^2 )
=( x^2 + y^2 + 20 )
=41 + 20 = 61
therefore, x^3 - y^3 = 61
______________________________
Your answer : 61
______________________________
on squaring both side(eq.1) , we get
(x + y)^2 = (9)^2
x^2 + y^2 + 2xy = 81
x^2 + y^2 + 2(20) = 81
x^2 + y^2 = 81 - 40 = 41
x^2 + y^2 = 41. ______√_________
x^2 + y^2 - 2xy + 2xy = 41
(x - y)^2 + 2xy = 41
( x - y )^2 + 2(20) = 41
( x - y )^2 = 41 - 40
( x - y )^2 = 1 => x - y = 1 __√_______
x^3 - y^3 = ( x - y ) (x^2 + xy+ y^2 )
=1 ( x^2 + 20 + y^2 )
=( x^2 + y^2 + 20 )
=41 + 20 = 61
therefore, x^3 - y^3 = 61
______________________________
Your answer : 61
______________________________
Similar questions
Math,
7 months ago
Chemistry,
7 months ago
Psychology,
1 year ago
English,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago