if x+y=9 andx^2+y^2=49 then find the value of xy
Answers
Answered by
25
Answer:
x y = 16.
Step-by-step explanation:
Given :
x + y = 9 ... ( i )
We have to find xy
Using identity here we get
Now put the values of ( i ) and ( ii ) we get
Thus we get answer 16.
Answered by
7
Answer :-
Explanation :-
Given :-
x + y = 9
x² + y² = 49
To find :-
Value of xy
Solution :-
We know that,
(x + y)² = x² + y² + 2xy
It can be written as
⇒ (x + y)² - x² - y² = 2xy
⇒ (x + y)² - (x² + y²) = 2xy
Here x + y = 9 , x² + y² = 49
By substituting the values
⇒ (9)² - (49) = 2xy
⇒ 81 - 49 = 2xy
⇒ 32 = 2xy
⇒ 32/2 = xy
⇒ 16 = xy
⇒ xy = 16
Verification :-
(x + y)² - (x² + y²) = 2xy
⇒ (9)² - (49) = 2(16)
⇒ 81 - 49 = 32
⇒ 32 = 32
Identity used :-
(x + y)² - (x² + y²) = 2ab
Similar questions