Math, asked by arpit2344, 8 months ago

if x+y = 90
Sec2x- Cot2y = 1​

Answers

Answered by pulakmath007
12

SOLUTION

GIVEN

x + y = 90°

TO PROVE

 \sf{ { \sec}^{2} x -   { \cot}^{2}y = 1 }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \sf{ { \sec}^{2}  \theta -   { \tan}^{2} \theta = 1 }

EVALUATION

Here it is given that x + y = 90°

∴ y = 90° - x

Now

 \sf{ { \sec}^{2} x -   { \cot}^{2}y }

 \sf{  = { \sec}^{2} x -   { \cot}^{2}( {90}^{ \circ}  - x) }

 \sf{  = { \sec}^{2} x -  \bigg[{  \cot( {90}  ^{ \circ}  - x) \bigg] }^{2} }

 \sf{  = { \sec}^{2} x -  \bigg[{  \tan x \bigg] }^{2} }

 \sf{  = { \sec}^{2} x -  {  \tan}^{2} x }

 = 1

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that tan(45+theta)=1+tan theta/1-tan theta

https://brainly.in/question/1747598

2. Prove that : tan (45+A)= sec2A + tan2A

https://brainly.in/question/25501012

Similar questions