Math, asked by anindyaadhikari13, 3 months ago

If x ≠ y and,
→ x² = 17x + y
→ y² = x + 17y

Find the value of √(x² + y² + 1)​

Answers

Answered by user0888
28

Answer Keys.

We can add or subtract both sides of an equation by an equal value. If we subtract the equation we will find a solution.

Solution.

Let's subtract the equation.

x^2-y^2=16x-16y

\rightarrow (x+y)(x-y)=16(x-y)

\rightarrow (x+y-16)(x-y)=0

\therefore x+y=16

Then, let's add the equation.

x^2+y^2=18x+18y

\rightarrow x^2+y^2=18\cdot 16

\rightarrow x^2+y^2=17^2-1^2

So, our answer is

\sqrt{x^2+y^2+1} =\sqrt{17^2} =\boxed{17}

More information.

What is the value of xy here?

Let \begin{cases} & x+y=u\\  & xy=v\end{cases}

Then x^2+y^2=u^2-2v

\rightarrow 17^2-1^2=16^2-2v

\rightarrow 2v=16^2-17^2+1^2

\rightarrow 2v=-33+1

\rightarrow 2v=-32

\therefore v=-16

So, the value of xy is -16.

Answered by XxFantoamDEADPOOLXx
8

Adding the two given equations, we get,

{x}^{2} + {y}^{2} =18(x+y).

Subtracting the second equation from the first, we get,

 {x}^{2} − {y}^{2} =16(x−y).

⇒(x+y) (x−y) = 16 (x−y).

⇒x + y=16.

⇒ {x}^{2} + {y}^{2} =18×16.

⇒ \sqrt{ {x}^{2} + {y}^{2} +1}= \sqrt{18×16+1}

= \sqrt{289} = 17.

Similar questions