Math, asked by samir2833, 1 year ago

IF X,Y AND Z ARE POSITIVE REAL NUMBERS THEN FIND THE MINIMUM VALUE OF (X+Y+Z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})

THIS QUESTION IS REALATED TO SEQUENCE AND SERIES SO SOLVE ON THE BASIS ​

Answers

Answered by BrainlyConqueror0901
127

Answer:

\huge{\boxed{\sf{(x + y + z)( \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} ) _{min}  = 9}}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{A.M\geqslant\:H.M}}}

SO FROM THESE INEQUALITIES WE SOLVE IN THIS PROCESS.

 \frac{x + y + z}{3}  \geqslant  \frac{3}{( \frac{1}{x} +  \frac{1}{y}  +  \frac{1}{z} ) }  \\  = )(x + y + z)( \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} ) \geqslant 9 \\  = )(x + y + z)( \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z} ) _{min}  = 9

Similar questions