Math, asked by chitti33, 4 months ago

if x,y are lengths of two diagonals of rhombus and side of rhombus is a then x^2+y^2=​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{x and y are lengths of the diagonals of  rhombus}

\textsf{Length of the side is 'a'}

\textbf{To find:}

\textsf{The value of}\;\mathsf{x^2+y^2}

\textbf{Solution:}

\textsf{Concept used:}

\textsf{1.\;Diagonals of rhombus intersect at right angles}

\textsf{2.\;Diagonals of rhombus bisect each other}

\textsf{From the figure, by pythagoras theorem}

\mathsf{a^2=\left(\dfrac{x}{2}\right)^2+\left(\dfrac{y}{2}\right)^2}

\mathsf{a^2=\dfrac{x^2}{4}+\dfrac{y^2}{4}}

\mathsf{a^2=\dfrac{x^2+y^2}{4}}

\implies\boxed{\mathsf{x^2+y^2=4\,a^2}}

\textbf{Answer:}

\mathsf{The\;value\;of\;x^2+y^2\;is\;4a^2}

Attachments:
Similar questions