Math, asked by Pooranjoy8951, 5 months ago

If x+y/ax+by = y+z/ay+bz = z+x/az+bx, prove that each of these ratios is equal to 2/a+b, where x+y+z is not = 0

Answers

Answered by geetapoojari899
0

Answer:

\textbf{Concept used:}Concept used:

\text{If}\;\frac{a}{b}=\frac{c}{d}=\frac{e}{f}If

b

a

=

d

c

=

f

e

\text{then}then

\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}

b

a

=

d

c

=

f

e

=

b+d+f

a+c+e

\textbf{Given:}Given:

\frac{x+y}{ax+by}=\frac{y+z}{ay+bz}=\frac{z+x}{az+bx}

ax+by

x+y

=

ay+bz

y+z

=

az+bx

z+x

\text{Then, using the given concept}Then, using the given concept

\frac{x+y}{ax+by}=\frac{y+z}{ay+bz}=\frac{z+x}{az+bx}=\frac{x+y+y+z+z+x}{ax+by+ay+bz+az+bx}

ax+by

x+y

=

ay+bz

y+z

=

az+bx

z+x

=

ax+by+ay+bz+az+bx

x+y+y+z+z+x

\implies\frac{x+y}{ax+by}=\frac{y+z}{ay+bz}=\frac{z+x}{az+bx}=\frac{2x+2y+2z}{a(x+y+z)+b(x+y+z)}⟹

ax+by

x+y

=

ay+bz

y+z

=

az+bx

z+x

=

a(x+y+z)+b(x+y+z)

2x+2y+2z

\implies\frac{x+y}{ax+by}=\frac{y+z}{ay+bz}=\frac{z+x}{az+bx}=\frac{2(x+y+z)}{(x+y+z)(a+b)}⟹

ax+by

x+y

=

ay+bz

y+z

=

az+bx

z+x

=

(x+y+z)(a+b)

2(x+y+z)

\implies\bf\frac{x+y}{ax+by}=\frac{y+z}{ay+bz}=\frac{z+x}{az+bx}=\frac{2}{a+b}⟹

ax+by

x+y

=

ay+bz

y+z

=

az+bx

z+x

=

a+b

2

Similar questions