If x – y = c, z – x = b, y – z = a, a^2 + b^2 + c^2 =25, then the value of x^2 + y^2 + z^2– xy – yz – zx is equal to
Answers
Step-by-step explanation:
x - y = c ------- 1
z - x = b --------2
y - z = a --------3
a²+b²+c² = 25 ---------------- 4
x²+y²+z²-xy-yz-zx = ?
putting values of eqn 1,2 and 3 in eqn 4
(y-z)² + (z-x)² + (x-y)² = 25
*a²-2ab+b² = (a-b)² applying this formula in above eqn
{y²-2yz+z²}+{z²-2zx+x²}+{ x²-2xy+y²} = 25
y²-2yz+z²+z²-2zx+x²+x²-2xy+y² = 25
2x²+2y²+2z²-2xy-2yz-2zx = 25
taking 2 common from above eqn
2 (x²+y²+z²-xy-yz-zx) = 25
x²+y²+z²-xy-yz-zx = 25*2
x²+y²+z²-xy-yz-zx = 50. ANSWER
25/2
Given:
x - y = c
z - x = b
y - z = a
a² + b² + c² = 25
To find:
The value of x² + y² + z² - xy - yz - xz
Answer in 3 Steps
1. Square all terms by Using Algebra Formula.
2. Substitute the given value.
3. Simplify and Get answer.
Solution:
x - y = c
[Squaring both side]
(x - y)² = c²
x² + y² - 2xy = c²
Similarly, By Squaring (z - x) and (y - z) I get,
z² + x² - 2xz = b² and y² + z² - 2yz = a²
Now, Adding all terms,
x² + y² - 2xy + z² + x² - 2xz +y² + z² - 2yz
= a²+ b² +c²
2x² + 2y² + 2z² - 2xy - 2xz - 2yz = 25
Or, 2(x² + y² + z² - xy - xz - yz )= 25
Or, x² + y² + z² - xy - xz - yz = 25/2
Therefore, The required answer is 25/2
Some Important Algebra Formula