Math, asked by siddheshchavan2003, 5 months ago

if x^y= e ^x-y then Dy/dx =​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 {x}^{y}  =  {e}^{x - y}  \\

Taking log both sides,

y ln(x)  = x - y

 \implies \: y( ln(x)  + 1) = x

Differentiating both sides, we have,

 \implies( ln(x)  + 1) \frac{dy}{dx}  + y( \frac{1}{x} ) = 1 \\

 \implies \frac{dy}{dx}  = (1 -  \frac{y}{x} ) \times  \frac{1}{ ln(x)  + 1}  \\

 \implies \frac{dy}{dx}  =  \frac{(x - y)}{x ln(x)  + x}  \\

Similar questions