Math, asked by roy179266, 8 months ago

if x^y=e^x-y, then dy/dx at x=e is​

Answers

Answered by shadowsabers03
8

Given,

\longrightarrow x^y=e^{x-y}

Taking log on both sides,

\longrightarrow \log(x^y)=\log(e^{x-y})

\longrightarrow y\log x=x-y

\longrightarrow y+y\log x=x

\longrightarrow y(1+\log x)=x

\longrightarrow y=\dfrac{x}{1+\log x}

Differentiating with respect to x,

\longrightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left(\dfrac{x}{1+\log x}\right)

By quotient rule,

\longrightarrow \dfrac{dy}{dx}=\dfrac{(1+\log x)\cdot\dfrac{d}{dx}(x)-x\cdot\dfrac{d}{dx}(1+\log x)}{(1+\log x)^2}

\longrightarrow \dfrac{dy}{dx}=\dfrac{(1+\log x)(1)-x\left(0+\dfrac{1}{x}\right)}{(1+\log x)^2}

\longrightarrow \dfrac{dy}{dx}=\dfrac{1+\log x-1}{(1+\log x)^2}

\longrightarrow \dfrac{dy}{dx}=\dfrac{\log x}{(1+\log x)^2}

At x=e,

\longrightarrow \dfrac{dy}{dx}=\dfrac{\log e}{(1+\log e)^2}

\longrightarrow \dfrac{dy}{dx}=\dfrac{1}{(1+1)^2}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=\dfrac{1}{4}}}

Hence \bf{\dfrac{1}{4}} is the answer.

Similar questions