Math, asked by devikakrishnat, 7 hours ago

if (x-y)+i(2y)=6-4i, x and y are real numbers, then find the values of x and y.​

Answers

Answered by harshkhulwe07
1

It's not much difficult, you just have compare both sides.

hope you understood it!

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:(x - y) + i \: 2y = 6 - 4i

On comparing Imaginary parts on both sides, we get

\rm :\longmapsto\:2y =  - 4

\bf\implies \:y =  - 2

Now, On comparing real parts on both sides, we get

\rm :\longmapsto\:x - y = 6

\rm :\longmapsto\:x - ( - 2) = 6

\rm :\longmapsto\:x  + 2 = 6

\rm :\longmapsto\:x  = 6 - 2

\bf\implies \:x = 4

Thus,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x = 4} \\  \\ &\sf{y =  - 2} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions