If X + y is equal to 7 and X square + y square is equal to 25 then find the value of x cube + y cube
Answers
Answered by
108
Solution
Given :-
- x + y = 7 _______(1)
- x² + y² = 25________(2)
Find :-
- Value of x³ + y³
Explanation
Using Formula
★ (x²+y²) = (x+y)² - 2xy
So,
➡ 25 = (7)² - 2xy
➡25 - 49 = -2xy
➡2xy = 49-25
➡2xy = 24
➡xy = 24/2
➡xy = 12 _____________(3)
Now,
★ (x-y) = (x+y)² - 4xy
➡ x - y = (7)² - 4×12
➡x - y = 49 - 48
➡x - y = 1 ____________(4)
Add equ(1) & equ(4)
➡2x = 8
➡x = 8/2
➡x = 4
Keep value of x in equ(1)
➡4 + y = 7
➡y = 7 - 4
➡y = 3
Hence
- Value of x = 4
- Value of y = 3
Since
- Value of x³ + y³ = 4³ + 3³ = 64 + 27 = 91
________________
Answered by
41
Given:-
- x + y = 7
- x² + y² = 25
To Find: Value of (x³ + y³).
We know,
a² + b² = (a + b)² - 2ab
similarly,
x² + y² = (x + y)² - 2xy
→ 25 = 7² - 2xy
→ - 2xy = 5² - 7²
→ - 2xy = (5 + 7)(5 - 7)
→ 2xy = (12)(2)
→ xy = 12
Also, we know,
a³ + b³ = (a + b)³ - 3ab(a + b)
→ x³ + y³ = (x + y)³ - 3xy(x + y)
= (7)³ - 3(12)(7)
= 343 - 252
= 91 (Answer)
Similar questions