Math, asked by bhateanamikagmailcom, 9 months ago

if (x/y) n-1=(y/x) n-3 then the value of n is​

Answers

Answered by PixleyPanda
29

Answer:

Step-by-step explanation:

( x /y) ^( n -1) = ( y/x )^( n -3)

(x /y)^( n -1) = (x/y)^{ -(n -3)}

( x/y)^( n -1) = (x/y)^(3 -n )

we know,

a^m = a ^n

then

m = n

use this here ,

so,

n -1 = 3 -n

2n = 4

n =2 ( answer)

Also refer the pic

Mark as brainlist

Follow me

Attachments:
Answered by pulakmath007
11

The value of n = 2

Given :

\displaystyle \sf{   {\bigg(  \frac{x}{y} \bigg)}^{n - 1}  =  {\bigg(  \frac{y}{x} \bigg)}^{n - 3} }

To find :

The value of n

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{   {\bigg(  \frac{x}{y} \bigg)}^{n - 1}  =  {\bigg(  \frac{y}{x} \bigg)}^{n - 3} }

Step 2 of 2 :

Find the value of n

\displaystyle \sf{   {\bigg(  \frac{x}{y} \bigg)}^{n - 1}  =  {\bigg(  \frac{y}{x} \bigg)}^{n - 3} }

 \displaystyle \sf{ \implies   {\bigg(  \frac{x}{y} \bigg)}^{n - 1}  =  {\bigg \{{\bigg(  \frac{x}{y} \bigg) }^{ - 1}  \bigg \}}^{n - 3} }

 \displaystyle \sf{ \implies   {\bigg(  \frac{x}{y} \bigg)}^{n - 1}  =  {\bigg(  \frac{x}{y} \bigg)}^{  - (n - 3)} }

 \displaystyle \sf{ \implies   n - 1 =  - (n - 3) }

 \displaystyle \sf{ \implies   n - 1 =  - n  + 3 }

 \displaystyle \sf{ \implies   2n  =  1  + 3 }

 \displaystyle \sf{ \implies   2n  =  4 }

 \displaystyle \sf{ \implies  n  =  2 }

Hence the required value of n = 2

Similar questions