Math, asked by meetmoliya41, 8 months ago

If x + y =pi + z, then prove that sin²x + sin²y – sin²z = 2 sin x sin y cos z.​

Answers

Answered by Cosmique
17

Given :

  • x + y = π + z

To prove :

  • sin²x + sin²y - sin²z = 2 sin x sin y sin z

Proof :

As given

→ x + y = π + z

→ sin ( x + y ) = sin ( π + z )

putting sin ( π + z ) = - sin z

→ sin ( x + y ) = - sin z

using trigonometric identity

sin ( A + B ) = sin A cos B + cos A sin B

→ sin x cos y  +cos x sin y = - sin z

squaring both sides

and using idnetity (a + b)² = a² + b² + 2 ab in LHS

→ sin²x cos²y  +cos²x sin²y + 2 sin x sin y cos x cos y = sin²z

putting cos²y = 1 - sin²y  and putting cos²x = ( 1 - sin² x )

→ sin² x ( 1 - sin²y ) + ( 1 - sin²x ) sin²y + 2 sin x sin y cos x cos y = sin²z

→ sin²x - sin²x sin²y + cos²x - sin²x sin²y + 2 sin x sin y cos x cos y = sin²z

→ sin²x + sin²y - sin²z = 2 sin²x sin²y - 2 sin x sin y cos x cos y

taking ( sin x sin y ) common in RHS

→ sin²x + sin²y - sin²z = 2 sin x sin y (  sin x sin y - cos x cos y )

Using trigonometric identity, putting ( sin x sin y - cos x cos y ) = cos ( x + y ) in RHS

→ sin²x + sin²y - sin²z = 2 sin x sin y cos ( x + y )

As given that (x + y) = (π + z)

→ sin²x + sin²y - sin²z = 2 sin x sin y cos ( π + z )

since, by identity cos ( π + z ) = cos z

therefore,

→ sin²x + sin²y - sin²z = 2 sin x sin y cos z

PROVED .

Similar questions