Math, asked by lakshitabardiya123, 9 months ago

if x +¡y=root a+¡b/c+¡d prove that x ^2+y^2=a ^2+b ^2/c^2+d​

Attachments:

Answers

Answered by SonalRamteke
1

Step-by-step explanation:

If a+ibc+id=x+iy, prove that(i) a−ibc−id=(x−iy) (ii) a2+b2c2+d2=(x2+y2)

Answered by senboni123456
2

Step-by-step explanation:

We have,

x + iy =  \sqrt{ \frac{a + ib}{c + id} }

 =  > (x + iy)^{2}  =  \frac{(a + ib)(c - id)}{c^{2} +  d^{2} }

 =  > ({x}^{2}  -  {y}^{2} ) + 2xyi =  \frac{(ac + bd) + (bc - ad)i}{c ^{2}  + d^{2} }

Taking modulus and squaring it,

 =  >   |({x}^{2}  -  {y}^{2} ) + 2xyi | ^{2}  =   |\frac{(ac + bd) + (bc - ad)i}{c ^{2}  + d^{2} }  |^{2}

 =  >  ({x}^{2}  -  {y}^{2} )^{2}  + 4x^{2} y^{2}  =  \frac{(ac + bd) ^{2}  + (bc - ad)^{2} }{(c ^{2}  + d^{2} )^{2} }

 =  > ( {x}^{2}  +  {y}^{2} )^{2}  =  \frac{ {a}^{2} {c}^{2} +  {b}^{2} {d}^{2}  + 2abcd +  {b}^{2}   {c}^{2}  +  {a}^{2} {d}^{2}   - 2abcd  }{( {c}^{2} +  {d}^{2}  ) ^{2} }

 =  > ( {x}^{2}  +  {y}^{2})^{2} =  \frac{ {c}^{2}( {a}^{2} +  {b}^{2}  ) +  {d}^{2}( {a}^{2} +  {b}^{2}  )}{( {c}^{2} +  {d}^{2})^{2}   }

 =  > ( {x}^{2}  +  {y}^{2} )^{2} =  \frac{ {a}^{2} +  {b}^{2}  }{ {c}^{2} +  {d}^{2}  }

Similar questions