Math, asked by mahima81621, 11 months ago

If x y sin cos sin cos 3 3 θ θ θθ + = and x y sin cos θ θ = , than x y 2 2 + is equal to

Answers

Answered by harendrachoubay
12

The value of x^{2}+y^{2} is equal to 1.

Step-by-step explanation:

We have,

x=\sin 3\theta        .......(1)

and,

y=\cos 3\theta       .......(2)

To find, the value of x^{2} +y^{2} =?

Squaring and adding (1) and (2), we get

x^{2}+y^{2}=(\sin 3\theta)^{2} +(\cos 3\theta)^{2}

x^{2}+y^{2}=\sin^2 3\theta +\cos^2 3\theta

x^{2}+y^{2}=1

[∵ \sin^2 \theta +\cos^2 \theta=1]

The value x^{2}+y^{2}=1

Hence, the value of x^{2}+y^{2} is equal to 1.

Similar questions