Math, asked by ryilafh6, 4 months ago

If x+y= \frac{7}{2} and xy= \frac{5}{2} ;find:
(i) x-y
(ii)  {x}^{2}  -  {y}^{2}

Answers

Answered by Anonymous
4

• To find

(i) x-y

 \rightarrow \sf(x + y {)}^{2}  =  {(x)}^{2}  +  {(y)}^{2}  - 2(xy) -  -  - (i)

 \sf \rightarrow {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

 \sf \rightarrow \frac{49}{4}  -  \frac{5}{4}  =  {x}^{2}  +  {y}^{2}

 \sf \rightarrow \frac{29}{4}  =  {x}^{2}  +  {y}^{2}

Put (i)

 \sf \implies {(x - y)}^{2}  =  \frac{29}{4}  -  \frac{5}{4}  =  \frac{9}{4}

 \therefore   \sf \: x - y =    +  -  \frac{3}{2}

(ii)  \sf   \bf{x}^{2}  -  {y}^{2}

 \sf  {x}^{2}  -  {y}^{2}  =  {(x - y)}^{2}

 \sf \: x - y =  \frac{3}{2}   \:   \\  \\  \sf\therefore \:  {x}^{2}  -  {y}^{2}  \implies \frac{ {3}^{2} }{ {2}^{2} }  =  \frac{ +  - 9}{4}

~Hope it helps you...

Similar questions