if x+y=w+z, then prove that AOB is a line .
Answers
☄️ Question :-
If x+y = w+z, then prove that AOB is a line.
☄️ Solution :-
We know that,
[Sum of all the angles at a point=360°]
Since,
⭐From axiom 6.2 : If the sum of two adjacent angles is 180°, then non-common arms form a line [Reverse linear pair].
_________________________
Therefore, AOB is a straight line.
Hence, proved !!
Answer:
We know that,
\mapsto \bf x + y + w + z = 360°↦x+y+w+z=360°
[Sum of all the angles at a point=360°]
\mapsto \bf (x+y)+(w+z)=360°↦(x+y)+(w+z)=360°
\mapsto \bf (x+y)(x+y)=360°\:\:[Given, \:x+y=w+z↦(x+y)(x+y)=360°[Given,x+y=w+z
\mapsto \bf 2(x+y)=360°↦2(x+y)=360°
\mapsto \bf x+y=\dfrac{360°}{2}↦x+y=
2
360°
\mapsto \bf x+y=180°↦x+y=180°
Since,\bf w+z=x+yw+z=x+y
\mapsto \bf w+z=180°↦w+z=180°
\bf Now, \:x+y=180°\:and\:w+z=180°Now,x+y=180°andw+z=180°
⭐From axiom 6.2 : If the sum of two adjacent angles is 180°, then non-common arms form a line [Reverse linear pair].